Menthol, leg wellness & cellulite

Circulation / water retention, lipolysis, cellulite

Menthol, derived from mentha piperita (mint) or mentha arvensis (wild mint), has been found to help boost lipolysis and blood circulation (and thereby fight water retention). It also enhances the absorption of other active ingredients by the skin. 

 

MENTHOL CREAM

Menthol is therefore of great importance as active ingredient in anti-cellulite and leg wellness creams [the Celluence® cellulite creams with menthol (derived naturally from wild mint) combined with 39 other natural anti-cellulite actives].

 


6+ ways Menthol...

...helps boost circulation and lipolysis and fights water retention and cellulite

 

 

Dietary menthol-induced TRPM8 activation enhances WAT "browning" and ameliorates diet-induced obesity

Abstract: Beige adipocytes are a new type of recruitable brownish adipocytes, with highly mitochondrial membrane uncoupling protein 1 expression and thermogenesis. Beige adipocytes were found among white adipocytes, especially in subcutaneous white adipose tissue (sWAT). Therefore, beige adipocytes may be involved in the regulation of energy metabolism and fat deposition. Transient receptor potential melastatin 8 (TRPM8), a Ca(2+)-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the thermogenic function of brown adiposytes. However, the involvement of TRPM8 in the thermogenic function of WAT remains unexplored. Our data revealed that TRPM8 was expressed in mouse white adipocytes at mRNA, protein and functional levels. The mRNA expression of Trpm8 was significantly increased in the differentiated white adipocytes than pre-adipocytes. Moreover, activation of TRPM8 by menthol enhanced the expression of thermogenic genes in cultured white aidpocytes. And menthol-induced increases of the thermogenic genes in white adipocytes was inhibited by either KT5720 (a protein kinase A inhibitor) or BAPTA-AM. In addition, high fat diet (HFD)-induced obesity in mice was significantly recovered by co-treatment with menthol. Dietary menthol enhanced WAT "browning" and improved glucose metabolism in HFD-induced obesity mice as well. Therefore, we concluded that TRPM8 might be involved in WAT "browning" by increasing the expression levels of genes related to thermogenesis and energy metabolism. And dietary menthol could be a novel approach for combating human obesity and related metabolic diseases.

 

 

Menthol could help turn white fat into brown fat via UCP1 and without adrenergic stimulation

Source: Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health.

Abstract: INTRODUCTION: Obesity constitutes a serious global health concern reaching pandemic prevalence rates. The existence of functional brown adipose tissue (BAT) in adult humans has provoked intense research interest in the role of this metabolically active tissue in whole-body energy balance and body weight regulation. A number of environmental, physiological, pathological, and pharmacological stimuli have been proposed to induce BAT-mediated thermogenesis and functional thermogenic BAT-like activity in white adipose tissue (WAT), opening new avenues for therapeutic strategies based on enhancing the number of beige adipocytes in WAT. HYPOTHESIS: Recent evidence support a role of l-menthol cooling, mediated by TRPM8 receptor, on UCP1-dependent thermogenesis and BAT-like activity in classical WAT depots along with the recruitment of BAT at specific anatomical sites. l-Menthol-induced BAT thermogenesis has been suggested to occur by a β-adrenergic-independent mechanism, avoiding potential side-effects due to extensive β-adrenergic stimulation mediated by available beta receptor agonists. l-Menthol has been also linked to the activation of the cold-gated ion channel TRPA1. However, its role in l-menthol-induced UCP1-dependent thermogenic activity in BAT and WAT remains undetermined. White adipose tissue plasticity has important clinical implications for obesity prevention and/or treatment because higher levels of UCP1-dependent thermogenesis can lead to enhanced energy expenditure at a considerable extent. We hypothesize that chronic dietary l-menthol treatment could induce TRPM8- and TRPA1-dependent WAT adaptations, resembling BAT-like activity, and overall improve whole-body metabolic health in obese and overweight individuals. CONCLUSIONS: The putative impact of chronic l-menthol dietary treatment on the stimulation of BAT-like activity in classical WAT depots in humans remains unknown. A detailed experimental design has been proposed to investigate the hypothesized l-menthol-induced browning of WAT. If our hypothesis was to be confirmed, TRPM8/TRPA1-induced metabolic adaptations of WAT to BAT-like activity could provide a promising novel therapeutic approach for increasing energy expenditure, regulating body weight, and preventing obesity and its related co-morbidities in humans.

 

 

Menthol stimulates UCP1 and brown adipose tissue thermogenesis and prevents obesity and diabetes

Source: Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity.

Abstract: Brown adipose tissue (BAT) is an energy-expending organ that produces heat. Expansion or activation of BAT prevents obesity and diabetes. Chronic cold exposure enhances thermogenesis in BAT through uncoupling protein 1 (UCP1) activation triggered via a β-adrenergic pathway. Here, we report that the cold-sensing transient receptor potential melastatin 8 (TRPM8) is functionally present in mouse BAT. Challenging brown adipocytes with menthol, a TRPM8 agonist, up-regulates UCP1 expression and requires protein kinase A activation. Upon mimicking long-term cold exposure with chronic dietary menthol application, menthol significantly increased the core temperatures and locomotor activity in wild-type mice; these effects were absent in both TRPM8(-/-) and UCP1(-/-) mice. Dietary obesity and glucose abnormalities were also prevented by menthol treatment. Our results reveal a previously unrecognized role for TRPM8, suggesting that stimulation of this channel mediates BAT thermogenesis, which could constitute a promising way to treat obesity.

 

 

Menthol skin application is twice as effective in increasing thermogenesis / metabolic rate than oral menthol

Source: The absorption and metabolism of a single L-menthol oral versus skin administration: Effects on thermogenesis and metabolic rate.

Abstract: We investigated the absorption and metabolism pharmacokinetics of a single L-menthol oral versus skin administration and the effects on human thermogenesis and metabolic rate. Twenty healthy adults were randomly distributed into oral (capsule) and skin (gel) groups and treated with 10 mg kg(-1) L-menthol (ORALMENT; SKINMENT) or control (lactose capsule: ORALCON; water application: SKINCON) in a random order on two different days. Levels of serum L-menthol increased similarly in ORALMENT and SKINMENT (p > 0.05). L-menthol glucuronidation was greater in ORALMENT than SKINMENT (p < 0.05). Cutaneous vasoconstriction, rectal temperature and body heat storage showed greater increase following SKINMENT compared to ORALMENT and control conditions (p < 0.05). Metabolic rate increased from baseline by 18% in SKINMENT and 10% in ORALMENT and respiratory exchange ratio decreased more in ORALMENT (5.4%) than SKINMENT (4.8%) compared to control conditions (p < 0.05). Levels of plasma adiponectin and leptin as well as heart rate variability were similar to control following either treatment (p > 0.05). Participants reported no cold, shivering, discomfort, stress or skin irritation. We conclude that a single L-menthol skin administration increased thermogenesis and metabolic rate in humans. These effects are minor following L-menthol oral administration probably due to faster glucuronidation and greater blood menthol glucuronide levels.

 

 

Menthol and icilin stimulate UCP1 thermogenesis via activating the TRPM8 cold receptor

Source: Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production.

Abstract: Mammals possess two types of adipose tissue, white (WAT) and brown (BAT). The uncoupling protein 1 (UCP1) is a hallmark of BAT, being the pivotal player for cold-induced thermogenesis. WAT can acquire BAT characteristics with up-regulation of UCP1 after cold exposure or adrenergic stimulation. In the present study we demonstrated that human white adipocytes express the cold-sensing receptor TRPM8 which activation by menthol and icilin induced a rise in [Ca²⁺](i) and UCP1 expression, increased mitochondrial membrane potential, glucose uptake and heat production. The induction of "brown-like" phenotype in human white adipocytes after TRPM8 activation was supported by ultrastructural morphological changes of mitochondrial morphology and of their intracellular localization, with no modifications of the genes regulating mitochondrial biogenesis. In conclusion human white adipocytes express the cold receptor TRPM8 whose activation induces their "browning" supporting a possible role of this receptor in the control of adipose tissue metabolism and body energy balance.

 

 

Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health.

Abstract
INTRODUCTION: Obesity constitutes a serious global health concern reaching pandemic prevalence rates. The existence of functional brown adipose tissue (BAT) in adult humans has provoked intense research interest in the role of this metabolically active tissue in whole-body energy balance and body weight regulation. A number of environmental, physiological, pathological, and pharmacological stimuli have been proposed to induce BAT-mediated thermogenesis and functional thermogenic BAT-like activity in white adipose tissue (WAT), opening new avenues for therapeutic strategies based on enhancing the number of beige adipocytes in WAT.

HYPOTHESIS: Recent evidence support a role of l-menthol cooling, mediated by TRPM8 receptor, on UCP1-dependent thermogenesis and BAT-like activity in classical WAT depots along with the recruitment of BAT at specific anatomical sites. l-Menthol-induced BAT thermogenesis has been suggested to occur by a β-adrenergic-independent mechanism, avoiding potential side-effects due to extensive β-adrenergic stimulation mediated by available beta receptor agonists. l-Menthol has been also linked to the activation of the cold-gated ion channel TRPA1. However, its role in l-menthol-induced UCP1-dependent thermogenic activity in BAT and WAT remains undetermined. White adipose tissue plasticity has important clinical implications for obesity prevention and/or treatment because higher levels of UCP1-dependent thermogenesis can lead to enhanced energy expenditure at a considerable extent. We hypothesize that chronic dietary l-menthol treatment could induce TRPM8- and TRPA1-dependent WAT adaptations, resembling BAT-like activity, and overall improve whole-body metabolic health in obese and overweight individuals.

CONCLUSIONS: The putative impact of chronic l-menthol dietary treatment on the stimulation of BAT-like activity in classical WAT depots in humans remains unknown. A detailed experimental design has been proposed to investigate the hypothesized l-menthol-induced browning of WAT. If our hypothesis was to be confirmed, TRPM8/TRPA1-induced metabolic adaptations of WAT to BAT-like activity could provide a promising novel therapeutic approach for increasing energy expenditure, regulating body weight, and preventing obesity and its related co-morbidities in humans.