EGCG / green tea and your skin

Skin/wound repair, antioxidant activity, fibrosis, anti-ageing, cellulite

The green tea extract EGCG (epigallocatechin gallate) is the most important active molecule in green tea and responsible for most of its beneficial effects. EGCG is well researched for it's antioxidant, lipolytic, skin repair, anti-fibrotic and overall anti-ageing action.


Green tea / EGCG cream

For those reasons, EGCG is of great importance as active ingredient in anti-ageing, anti-cellulite, leg wellness, skin firming and under-eye creams [the Celluence® creams are the only cellulite creams in the world with high concentrations of 95%+ pure EGCG, plus 39x other natural anti-cellulite actives].



How much EGCG IS THEre in dried green tea leaves / IN A TYPICAL CUP OF  green TEA?

Dried green tea leaves contain anything between .2%-20% EGCG per weight, with an average percentage of 7%. This means that a double strength 2g green tea portion can provide you with about 140mg of EGCG, if allowed to brew for five minutes. In this respect, green tea is unique among most herbs in that it contains a really high amount of beneficial actives, compared for example to 0.5% of polyphenols contained in cocoa powder or 1% triterpenes contained in dried centella/gotu kola leaves.

[Source: USDA Database for the Flavonoid Content of Selected Foods Release 3.1]



Does Matcha green tea contain more EGCG than normal green tea?

It seems that the EGCG contained in a cup of normal green tea and in a cup of matcha tea is roughly the same, according to the study below (0.42mg/g of normal tea vs 0.28mg/g of matcha tea - please note that these numbers are for cups of 75ml finished tea, not per 1g of green tea leaves). With 100% methanolic extraction matcha tea seems to contain a lot more EGCG, but then again our stomach does not use 100% methanol extraction, so the report on the methanolic extraction of EGCG from green tea in this study is quite pointless.

[Source: Determination of catechins in matcha green tea by micellar electrokinetic chromatography]



Sencha green tea vs matcha green tea

It seems that a less known variety of green tea powder, sencha green tea powder, contains more EGCG and catechins in general, than matcha green tea.

[Sources: Quantitative analysis of (-)-epigallocatechin gallate in tea leaves by high-performance liquid chromatography; Contents of Individual Tea Catechins and Caffeine in Japanese Green Tea;]



20/ ways the green tea extract EGCG...

...helps heal skin and wounds and fights skin ageing, fat accumulation and cellulite



13/  EGCG a potential rapamycin molecule for anti-aging and life extension, study finds

(Source: Towards natural mimetics of metformin and rapamycin)



12/ EGCG from green tea inhibits fat tissue growth... decreasing levels of PPAR-gamma and fatty acid synthase in adipocytes in a concentration-dependent manner

[Source: Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells]


11/ EGCG confers anti-collagenase, anti-fibrotic, anti-inflammatory...

...antioxidant and anti-cancer benefits to different body tissues. EGCG, like most polyphenols

[Source: Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments}



10/ A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice

Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity.



9/ Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss.

Abstract: Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss.



8/ A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts.

Abstract: The present study aimed to explore the underlying mechanisms of epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) involved in their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. In the synthetic "lipid raft-like" liposome, A-type ECG and EGCG dimers incorporated into the liposome with high affinity and decreased the fluidity of the liposome. In 3T3-L1 preadipocytes, A-type ECG and EGCG dimers possibly bonded to lipid rafts cholesterol and disrupted the integrity of lipid rafts, thus exerting their notable inhibitory effects on 3T3-L1 preadipocytes differentiation by suppressing mitotic clonal expansion process and mRNA levels of PPARγ, C/EBPα and SREBP1C. A highly positive correlation between the cholesterol binding capacity of the two dimers and their inhibitory effect on 3T3-L1 preadipocytes differentiation (R2=0.9328) was observed. Molecular dynamics simulation further verified that A-type ECG and EGCG dimers could bond to cholesterol via hydrogen bonding. The results of this study suggested that the disruption of A-type ECG and EGCG dimers on membrane lipid rafts by targeting cholesterol in the lipid rafts was involved in the underlying mechanisms of their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. This broadens the understanding of the molecular mechanisms of polyphenols on modulating and controlling of metabolic dysregulation, particularly adipocyte differentiation, which is a significant risk factor associated with the development of cardiovascular disease.



7/ Green tea extract EGCG combined and quercetin fights fat tissue inflammation... inhibiting the action of inflammatory response genes

[Source: Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice]



6/ EGCG is a great complement to the anti-inflammatory action of the steroid drug prednisolone...

...combating inflammation via multiple, complementary to glucocorticoids, pathways. Specifically, EGCG significantly inhibits ROS and IL-8 (prednisolone doesn't) and is equally effective in fibrinogen binding (conversely, EGCG does not inhibit TNF-alpha and IL-6 that respond to prednisolone).


[Source: Head-to-Head Comparison of Anti-Inflammatory Performance of Known Natural Products In Vitro]



5/ EGCG boosts brown fat thermogenesis and mitochondrial biogenesis...

...evidenced by increased temperature, fat loss, mitochondrial DNA (mtDNA) and AMPK

[Source: Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice]


4/ The combination of genistein, EGCG and resveratrol inhibits preadipocyte differentiation... low dosages in an additive manner (but not synergistically). The combination reduces levels of PPAR-gamma and C/EBP-alpha the two key preadipocyte differentiation regulators. The combination also reduced FABP4 and perilipin, two PPAR-γ/C/EBP-α downstream molecules. The individual compounds had no anti-adipogenic effect at low concentrations.

[Source: Antiadipogenic Effects and Mechanisms of Combinations of Genistein, Epigallocatechin-3-Gallate, and/or Resveratrol in Preadipocytes]


3/ EGCG acts as a caloric restriction mimetic and boosts lipolysis... upregulating adipocyte autophagic lipolysis, reducing adipocyte triglycerides by 25%, intracellular ATP levels by 49% and inducing AMPK phosphorylation, indicating an energy-depleted state. However, EGCG does not casue adiciyte browing.

[Source: Effects of Epigallocatechin-3-Gallate on Autophagic Lipolysis in Adipocytes]


2/ Green tea extract EGCG can benefit hayfever by suppressing the inflammatory molecules...

...immunoglobulin E (IgE), histamine, interleukin (IL)-1β, IL-4, and IL-6 and COX-2 [Source: Anti-inflammatory effect of epigallocatechin gallate in a mouse model of ovalbumin-induced allergic rhinitis]



1/ EGCG green tea extract prevents disease by protecting mitochondria...

...from oxidative stress, by helping regulate mitochondrial metabolism and biogenesis, and by modulating cell apoptosis due to mitochondrial dysfunction [Source: Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease]

epigallocatechin gallate in food protects fat cells from inflammation, helps fight cellulite

  • Dietary phytochemicals called polyphenols are known potent antioxidants that protect body tissues from free radical damage and consequent inflammation.
  • Inflammation and oxidative damage are key components of cellulite, as well as diabetes and several other so-called civilisation diseases, such as heart disease and arthritis.
  • Recent research has now looked into 28 polyphenols (such as hesperidin, resveratrol, epigallocatechin gallate and curcumin) and concluded that those polyphenols protect fat cells from both oxidative damage and inflammation, by reducing inflammatory hormones, such as IL-6.
  • This practically means that orally taken polyphenols (either as foods or as supplements) can be used in the fight against fat tissue inflammation for the prevention of diabetes and cellulite.
  • Polyphenols may also be used with local application in the fight against cellulite as active ingredients in an anti-cellulite cream. Naturally, the more of those polyphenols are present in the cream the better results are to be expected, due to a synergistic effect of using multiple ingredients.
  • Source: Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress
  • Abstract: "Obesity has been associated with a marked risk of metabolic diseases and requires therapeutic strategies. Changes in redox status with increased oxidative stress in adipose tissue have been linked with obesity-related disorders. Thus, the biological effect of antioxidants such as polyphenols is of high interest. We aimed to measure antioxidant capacities of 28 polyphenols representative of main dietary phenolic acids, flavonoids, stilbenes and curcuminoids. Then, 14 molecules were selected for the evaluation of their effect on 3T3-L1 preadipocytes and human red blood cells exposed to oxidative stress. Analysis of reducing and free radical-scavenging capacities of compounds revealed antioxidant properties related to their structure, with higher activities for flavonoids such as quercetin and epicatechin. Their effects on preadipocytes' viability also depended on their structure, dose and time of exposure. Interestingly, most of the compounds exhibited a protective effect on preadipocytes exposed to oxidative stress, by reversing H₂O₂-induced anti-proliferative action and reactive oxygen species production. Polyphenols also exerted an anti-inflammatory effect on preadipocytes exposed to H₂O₂ by reducing IL-6 secretion. Importantly, such antioxidant and anti-inflammatory effects were observed in co-exposition (polyphenol and prooxidant during 24 h) or pretreatment (polyphenol during 24 h, then prooxidant for 24 h) conditions. Moreover, compounds protected erythrocytes from AAPH radical-induced lysis. Finally, these results led to demonstrate that antioxidant and anti-inflammatory properties of polyphenols may depend on structure, dose, time of exposure and cell conditioning with oxidative stress. Such findings should be considered for a better understanding of polyphenols' benefits in strategies aiming to prevent obesity-related diseases."




EGCG from green tea negates caffeine's blood pressure & adrenaline release, thereby balancing the action of caffeine

Source: (-)-Epigallocatechin-3-O-gallate (EGCG) attenuates the hemodynamics stimulated by caffeine through decrease of catecholamines release.

Abstract: A human study of the effects on hemodynamics of caffeine and epigallocatechin-3-O-gallate (EGCG) was performed. Caffeine tablets (200 mg) were orally administered to healthy males aged between 25 and 35 years 30 min after oral administration of EGCG tablets (100 and 200 mg). The increase in BP induced by caffeine was inhibited when co-administrated with EGCG. We found that caffeine slightly decreased heart rate (HR) in the volunteers. Although EGCG enhanced HR reduction, the effect was not significant. In addition, caffeine increased blood catecholamine levels, but EGCG inhibited the increase in noradrenaline, adrenaline and dopamine levels induced by caffeine. Whether EGCG decreases the elevated HR and systolic perfusion pressure, and ventricular contractility induced by adrenergic agonists in the isolated rat heart was investigated. The modified Krebs-Henseleit solution was perfused through a Langendorff apparatus to the isolated hearts of rats. HR, systolic perfusion pressure, and developed maximal rates of contraction (+dP/dtmax) and relaxation (-dP/dtmax) were increased by epinephrine (EP) and isoproterenol (IP). In contrast, EGCG decreased the elevated HR, systolic perfusion pressure, and left ventricular ±dp/dtmax induced by EP and/or IP. In conclusion, EGCG could attenuate the hemodynamics stimulated by caffeine through decreasing catecholamine release.



Green tea extract EGCG stops stem cells from differentiating into fat cells

Source: Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage.

Abstract: Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity



Green tea extract EGCG prevents aortic aneurysm by boosting elastin and preventing inflammation

Source: Prevention of abdominal aortic aneurysm progression by oral administration of green tea polyphenol in a rat model.

Abstract: OBJECTIVE: Inflammation-mediated elastin destruction in the aortic medial layer is related to progression of abdominal aortic aneurysm (AAA). Epigallocatechin-3-gallate (EGCG), a major component of green tea polyphenols, reportedly increases elastin synthesis in vitro and may possess anti-inflammatory effects. We used a rat model to investigate whether EGCG could prevent AAA progression. METHODS: AAA was induced with administration of intraluminal elastase and extraluminal CaCl2 in male rats. Rats were randomly divided into a control group (n = 30) and an EGCG group (n = 30). In the EGCG group, an EGCG solution (20 mg/d) was administered orally to each rat from 2 weeks before AAA induction and continued 4 weeks beyond induction. RESULTS: The abdominal aortic diameter was significantly smaller in the EGCG group than in the control group on day 28 (2.9 ± 0.2 vs 2.3 ± 0.1 mm; P < .0001). The medial layer wall thickness and elastin content were significantly greater in the EGCG group than in the control group on day 28 (68.4 ± 13.6 vs 46.7 ± 13.4 μm [P < .001] and 20.3 ± 4.6 vs 9.5 ± 3.6% [P < .0001], respectively). Gene expression levels of tropoelastin and lysyl oxidase were significantly higher in the EGCG group immediately before AAA induction, indicating promoted elastoregeneration by EGCG administration (tropoelastin: 0.59 ± 0.36 control vs 1.24 ± 0.36 EGCG [P < .05], lysyl oxidase: 0.77 ± 0.45 control vs 1.34 ± 0.4 EGCG [P < .05]) (fold increase). Gene expression levels of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, were significantly downregulated in the EGCG group (1.82 ± 0.71 vs 0.97 ± 0.59 [P < .05] and 3.91 ± 3.24 vs 0.89 ± 0.59 [P < .05], respectively). On day 7, gene expression levels and gelatinolytic activity of matrix metalloproteinase 9 were significantly lower in the EGCG group (1.41 ± 0.86 vs 0.51 ± 0.42 [P < .05] and 1.00 ± 0.17 vs 0.29 ± 0.12 [P < .0001], respectively), whereas gene expression levels of tissue inhibitors of metalloproteinase-1 were significantly higher in the EGCG group (0.96 ± 0.11 vs 1.14 ± 0.09; P < .05). CONCLUSIONS: EGCG attenuated AAA progression in a rat model by preserving the aortic thickness and elastin content of the medial layer through regeneration of elastin, as mediated by anti-inflammatory effects, and subsequent reduction of matrix metalloproteinase activity.



Green tea extract EGCG inhibits fat accumulation in fat cells

Source: Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells.

Abstract: OBJECTIVE: The objective of this study was to investigate the molecular mechanisms underlying the attenuating effect of (-)-epigallocatechin-3-gallate (EGCG) on proliferation and lipid accumulation of 3T3-L1 cells, with a focus on the duration of EGCG treatment. RESEARCH METHODS AND PROCEDURES: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay and diamidino-2-phenylindole staining. The anti-adipogenic effect of EGCG on 3T3-L1 cells was analyzed by glycerol-3-phosphate dehydrogenase activity and Oil red O staining. Western blot analysis was used to detect adenosine monophosphate-activated protein kinase (AMPK) activation and phosphorylation of its substrate, acetyl-CoA carboxylase (ACC), and expression of insulin (INS) receptor, INS receptor substrate-1 (IRS-1), and adipocyte marker proteins. RESULTS: Exposure to EGCG during the early period of adipogenesis (7 days) was sufficient to prevent lipid accumulation. During this period, EGCG greatly decreased expression of the adipocyte marker proteins peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and liver X receptor (LXR)-alpha. Furthermore, EGCG significantly induced generation of reactive oxygen species (ROS), which led to AMPK activation, and these effects were eliminated by N-acetylcysteine (NAC) treatment. Also, EGCG increased the tyrosine phosphorylation of INS receptor and INS-1 with increasing incubation time. In contrast, EGCG treatment did not alter glycerol release in the presence or absence of 2',5'-dideoxyadenosine (DDA), indicating that EGCG had no effect on lipolysis. DISCUSSION: Our data demonstrate that EGCG decreased cell viability and inhibited differentiation of 3T3-L1 cells in a manner dependent on the duration of treatment. Also, we showed that inhibition of adipocyte differentiation by EGCG was associated with decreased glycerol-3-phosphate dehydrogenase (GPDH) activity accompanied by a strong inhibition of PPARgamma2-induced transcriptional activity. Furthermore, the inhibition of adipocyte differentiation by EGCG involved generation of ROS and activation of AMPK.



Green tea extract EGCG inhibits fat accumulation and boosts fat reduction by boosting AMPK

There is increasing evidence that the green tea chemical epigallocatechin gallate, the most important green tea catechin, can fight fat and obesity. This recent review reveals that the most probable mechanism by which green tea reduces fat accumulation in fat cells and boosts fat release from them, is it's activation of the protein AMPK. AMPK is now well known for it's lipolytic (fat release stimulation), anti-lipogenic (fat accumulation inhibition) and anti-adipogenic action (new fat cell creation inhibition). EGCG is one of the many natural chemicals that can help reduce fat and cellulite, as part of a healthy diet and exercise regime. 

Source: Beneficial Effects of Tea and the Green Tea Catechin Epigallocatechin-3-gallate on Obesity.

Abstract: Green tea has been shown to have beneficial effects against cancer, obesity, atherosclerosis, diabetes, bacterial and viral infections, and dental caries. The catechin (-)-epigallocatechin-3-gallate (EGCG) has shown the highest biological activity among green tea catechins (GTCs) in most of the studies. While several epidemiological studies have shown the beneficial effects of tea and GTCs on obesity, some studies have failed to do this. In addition, a large number of interventional clinical studies have shown these favorable effects, and cellular and animal experiments have supported those findings, and revealed the underlying anti-obesity mechanisms. One of the mechanisms is enhanced cellular production of reactive oxygen species, which is mediated through the pro-oxidant action of EGCG, leading to the activation of adenosine monophosphate-activated protein kinase (AMPK), which suppresses gene and protein expression of enzymes and transcription factors involved in adipogenesis and lipogenesis, and stimulates those involved in lipolysis. Recently, scientific evidence supporting the beneficial anti-obesity effects of green tea and GTCs has been increasing. However, future investigations are still required to clarify the reasons for the inconsistent results reported in the human studies; to achieve this, careful adjustment of confounding factors will be required.



The curcumin metabolite tetrahydrocurcumin (THC) and green tea polyphenols may both have a life prolonging / anti-ageing effect

Source: The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice.

Abstract: The effect of feeding of two different antioxidants, tetrahydrocurcumin (TC) and green tea polyphenols (PPs) on the survival of male C57BL/6 mice was examined. Mice that started to receive diets containing TC (0.2%) at the age of 13 months had significantly longer average life spans (days, mean +/- SD) than control mice (797.6 +/- 151.2 vs.882 +/- 154.6, both n = 50, controls vs. TC treated, plus 11.7%, P < 0.01). The 10% longest survival was also significantly greater in TC-treated mice (plus 6.5%, P < 0.01). In contrast, in mice that started to receive TC in their 19th month of life, no significant difference from the control mice was found for either the average life span or the 10% longest survival. In mice that received water containing PPs (80 mg/l), the average life span was also significantly longer than in the control mice (801 +/- 121.5 vs. 852.7 +/- 88.2, plus 6.4%, P < 0.05), although the 10% longest survival was not significantly different from that in the control mice (P > 0.05). The body weights of the TC (but not PP) fed mice, were slightly (2-4%) but significantly (P < 0.05) lower than the values for the corresponding ages in the control mice in the first six months of treatment. Thereafter, the difference in average body weight between the control and the TC-fed animals was totally lost. Although an additional contribution of an unintended slight decrease in food intake due to TC feeding (suspected due to the difference in body weight) is not excluded, we suggest that the feeding of nutritional antioxidants such as TC and PPs may have the potential to beneficially modify the life spans of animals.